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Turbulent shear-layer mixing at high Reynolds
numbers: effects of inflow conditions
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We report on the results from a set of incompressible, shear-layer flow experiments,
at high Reynolds number (Reδ ≡ ρ∆U δT (x)/µ ' 2 × 105), in which the inflow
conditions of shear-layer formation were varied (δT is the temperature-rise thickness
for chemically-reacting shear layers). Both inert and chemically-reacting flows were
investigated, the latter employing the (H2 +NO)/F2 chemical system in the kinetically-
fast regime to measure molecular mixing. Inflow conditions were varied by perturbing
each, or both, boundary layers on the splitter plate separating the two freestream
flows, upstream of shear-layer formation. The results of the chemically-reacting ‘flip
experiments’ reveal that seemingly small changes in inflow conditions can have a
significant influence not only on the large-scale structure and shear-layer growth rate,
as had been documented previously, but also on molecular mixing and chemical-
product formation, far downstream of the inflow region.

1. Introduction
It is an implicit assumption of turbulence and dynamic-similarity theory that, for

high-enough Reynolds numbers, in the far-field regions of the flow, i.e. sufficiently far
from inflow boundaries, and for times long after the initial conditions were established,
the flow, at least in a statistical sense, can be characterized by local flow parameters
(e.g. Batchelor 1953). In free-shear layers and some other flows, however, it is known
that the inflow conditions, or ‘initial’ conditions in a convective frame, can exert a
significant influence on the far-field properties, even at Reynolds numbers that must
be considered high.

A comparison of two of the earliest turbulent ‘half-jet’ experiments, i.e. a shear layer
for which the low-speed freestream speed is zero (U2 = 0), by Liepmann & Laufer
(1947) and Wygnanski & Fiedler (1970), for example, revealed a significantly-larger
growth rate in the latter experiment, a discrepancy eventually attributed to differences
in the flow upstream of the separation (shear-layer formation) region. In the former
experiment, the boundary layer was laminar, while in the latter it was turbulent. The
association of this increase in shear-layer growth with the state of the splitter-plate
boundary-layer (initial) condition was confirmed by the work of Batt (1975), and
Oster, Wygnanski & Fiedler (1976). Interestingly, for non-zero velocity ratios, i.e.
in shear layers with a coflowing low-speed stream (U2 6= 0), Oster and coworkers
found that a turbulent boundary layer on the high-speed splitter-plate side had the
opposite effect, i.e. a reduced downstream growth rate. This behaviour for co-flowing
freestreams was confirmed by the work of Browand & Latigo (1979), Weisbrot, Einav
& Wygnanski (1982), and Mungal, Hermanson & Dimotakis (1985). See also addi-
tional discussion and references in the review paper by Dimotakis (1991). In much
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of this work, it was found that the accompanying shear-layer velocity-fluctuation
(r.m.s.) and Reynolds-stress profiles were subject to significant changes, in response
to perturbed inflow conditions.

Shear layers are not unique in exhibiting such behaviour. Other examples of far-field
turbulent flows that depend on inflow/initial conditions have also been documented.
Wygnanski, Champagne & Marasli (1986) reported far-field properties of turbulent
wakes that depended on the shape of the body that produced the wake, e.g. airfoil,
plate, etc. A sensitivity to initial conditions was also reported in the seminal work by
Coles (1965) on transitional Couette-flow experiments, a behaviour corroborated by
recent direct numerical simulations (Yao & Ghosh Moulic 1995). Such a dependence
of self-similar turbulence on its initial conditions is also noted by George (1989), who
argues that self-similarity need not require universality, i.e. that the asymptotically-
attained flow state may depend on both inflow and initial conditions.

The requirement that the local Reynolds number must be appropriately large, if
quasi-asymptotic behaviour is to be expected, stems from the need to have Reynolds
stresses dominate viscous stresses, but also such that a sufficiently large range of
scales and small-scale three-dimensionality can have developed and be sustainable
(Dimotakis 1993). In shear layers, a relatively-well-defined transition to a state of
improved mixing was documented by Konrad (1976), in gas-phase shear layers, and
subsequently confirmed in liquid-phase shear layers (Breidenthal 1978; Bernal et al.
1979; Koochesfahani & Dimotakis 1986, and subsequently others). This transition
was reported to occur at the same minimum local Reynolds number, based on the
local shear-layer thickness and velocity difference,

Reδ ≡ ρ∆U δ(x)

µ
& 104, (1)

or so, for both gas- and liquid-phase layers, indicating that this is not a function of
the Schmidt number,

Sc ≡ ν

D , (2)

where D is the species diffusivity. Similar transitions, at comparable Reynolds num-
bers, are documented to occur in many other flows, so this behaviour and the
applicability of this minimum-Re criterion is not limited to shear layers.

This minimum-Re criterion must, however, be regarded as only necessary. Good
mixing and quasi-asymptotic behaviour are documented to have additional require-
ments. Bradshaw (1966) indicated that shear-layer turbulence required a relatively
long distance downstream to attain an asymptotic, quasi-self-similar state. In partic-
ular, on the basis of experiments in a half-jet (U2 = 0) shear layer, he proposed that
such a state required a minimum downstream distance, i.e.

xmin

θ
& 103, (3)

where x is the distance downstream of separation, or splitter-plate trailing edge, and
θ is the momentum thickness of the separating boundary layer; an inviscid criterion
in that it can, in principle, be varied independently of Reδ .

It was noted (Dimotakis & Brown 1976) that such a criterion could be cast in
terms of a minimum number of large-scale-structure interactions (e.g. pairings, or
triplings, etc.). The proposed minimum number is, approximately, four, in terms of
the estimated number of mergings,

m(x) = log2

(
x

`0

)
& 4, (4)
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i.e. a measure of the downstream distance, x, as scaled by the initial-disturbance spac-
ing, `0, with log-base-2 in (4) assuming pairing interactions are dominant. They argued
that this minimum distance and minimum number of interactions were required to
amortize the effects of inflow (initial) conditions.

In subsequent work by Huang & Ho (1990), a similar scaling of the downstream
distance was proposed, in terms of a parameter

P =
1− r
1 + r

(
x

`0

)
≈ 1− r

1 + r

( x
30
θ1

)
, (5a)

where r ≡ U2/U1 is the shear-layer freestream velocity ratio and θ1 is the initial, high-
speed boundary-layer momentum thickness. Huang & Ho argued that this parameter
effectively described the approach to self-similarity for a variety of shear-layer flows,
i.e. for different velocity ratios, r (cf. also Ho & Huerre 1984). They suggested that
a minimum value was required for self-similarity of the peak turbulence level in
gas-phase flows, in particular,

PHH & 8, (5b)

corresponding to the location of the second large-structure pairing, according to
their estimate, i.e. a criterion more relaxed than the one suggested by Dimotakis &
Brown. These authors also noted, however, that the properties of this self-similar state
appeared to be influenced, if not determined, by the inflow conditions of turbulence
formation, regardless of the distance from separation.

We note that the velocity-ratio scaling factor in (5a) is proportional to the local,
normalized, large-scale spacing, `(x)/x, independently of the freestream density ratio
(cf. Dimotakis 1986), and, therefore, as a measure, the Huang & Ho parameter, P ,
can be seen to be proportional to `(x)/`0, rather than x/`0.

It was initially proposed by Dimotakis & Brown (1976) and, subsequently, by
others (e.g. Narayanan & Hussain 1996) that the persistence of the effects of inflow
conditions on the far field of the flow could be the result of downstream-to-upstream
feedback, at least in elliptic (lab-frame subsonic) flow. In particular, if the instability
response of unbounded shear layers may be classified as that of an amplifier of
external disturbances (Huerre & Monkewitz 1985), then a shear-layer developing
as defined by an upstream, test-section, and outflow geometry, can be classified as a
relaxation oscillator (Dimotakis & Brown 1976), in which the flow must be understood
as evolving as a global response to inflow/outflow/confinement-geometry conditions
(cf. also discussion in Dimotakis 1991).

Much of the previous work included measurements of shear-layer growth rates,
Reynolds stresses, etc. Only limited data are available, however, regarding the response
and sensitivity of the shear-layer concentration field and its mixing properties to
changes in inflow conditions. Given the large-scale effects observed in the work cited
above, one might also expect significant influences in the small-scale behaviour of the
flow, which is important in the molecular/diffusion-scale mixing processes. Indeed,
hints of such behaviour can be found in other flows. By way of example, the far-field
jet-fluid concentration-fluctuation r.m.s. statistics (a measure of unmixedness), in the
far field of a turbulent jet, were found to be strongly influenced by the amplitude of
small (when scaled by the jet-exit velocity), initial velocity fluctuations in the reservoir
fluid that the jet discharged into (Miller 1991).

Some recent work on scalar mixing in a shear-layer flow was reported by Karasso &
Mungal (1996). These authors found the Huang & Ho (1990) scaling parameter useful
in their analysis of their measured estimates of the concentration-field probability-
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density function (p.d.f.). Dubbing P (equation (5a)) the ‘pairing parameter’, they
proposed a higher minimum value for a converged mixed-fluid state (scalar p.d.f.) of
22, corresponding to a distance between the average locations of third and fourth
vortex interaction, more closely in accord with the original proposal of Dimotakis
& Brown (1976). Despite expressing reservations about the accuracy of their direct-
measurement, laser-induced fluorescence results, on which their p.d.f. experimental-
estimates relied, they suggested that this value determined the transition between a
‘non-marching’ p.d.f., where the most-probable concentration is nearly-independent of
the transverse coordinate, y, and a ‘tilted’ p.d.f., in which the composition is correlated
with the local mean, i.e. a function of y. In particular, they proposed that the former
would be observed for P . 22, while the latter for P & 22, i.e. that self-similarity can
be expected for,

PKM & 22. (5c)

Karasso & Mungal also studied the effects of tripping the initial boundary layers,
stating that the effect of tripping was to decrease the (absolute) distance, x, required
to reach self-similarity. This is in accord with the behaviour reported by Bell & Mehta
(1990), who stated that, ‘The distance required to achieve self-similarity was distinctly
shorter in the tripped case, . . . ’. Karasso & Mungal further suggested that, beyond
this distance, inflow conditions were ‘forgotten’ by the turbulence, with a unique far-
field configuration that only depends on the freestream-velocity and -density ratio.
Since tripping the boundary layer(s) can be expected to result in an increase in the
initial momentum thickness(es), it would appear that this observation is not in accord
with a minimum-threshold criterion based on the pairing parameter P , or any other
measure of distance downstream scaled by initial boundary-layer thickness scales.
Finally, we note the proposal by Hussain (1977) that it is not the (thickness difference
of the) laminar vs. turbulent state of the inflow boundary layers, per se, but rather
the fluctuation level associated with the inflow conditions.

In the following, we present an experimental study of the effects of the inflow/initial
conditions on far-field, high-Re, shear-layer mixing. In particular, the experiments
were conducted at Reynolds numbers and values of distance/pairing parameters
well in excess of those attained in previous work and in excess of previously-
suggested guidelines for asymptotic behaviour, to assure that this would correspond
to ‘fully-developed’ and ‘statistically self-similar’ turbulence. The study employed flow
visualization and ‘flip experiments’ (Koochesfahani, Dimotakis & Broadwell 1985)
with kinetically-fast chemical reactions, i.e. chemically-reacting flows in the high
Damköhler number limit:

Da ≡ τmix

τchem
� 1, (6)

where τmix is the fluid-mechanical molecular-mixing time and τchem is the chemical-
reaction (completion) time. In this regime, chemical-product formation and heat re-
lease provides a resolution-insensitive probe of molecular (diffusion-scale) mixing, mit-
igating spatial-sampling/temporal-resolution difficulties of direct-measurement stud-
ies (cf. discussion in Breidenthal 1981; Koochesfahani & Dimotakis 1986; Dimotakis
1991 and Karasso & Mungal 1996). A detailed summary of the rationale and mea-
sures employed in the ‘flip’ experiment can be found in Dimotakis (1991). The brief
discussion below is offered for completeness.

If the flow is of gases with a uniform (molar) heat capacity and the effects of heat
release are small, a normalization of the resulting temperature-rise profile, ∆T (y),
at the measuring station, x, by the adiabatic flame temperature rise, ∆Tf , yields a
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dimensionless chemical-product/temperature-rise profile,

Θ(y) =
∆T (y)

∆Tf
. (7)

As chemical-product formation can only take place where entrained fluids are mixed
on a molecular scale, this can be used to define the 1% shear-layer temperature-rise
thickness, δT , as the span between the two points in the profile at 1% of the peak in
Θ(y). This has been found to be in good agreement with other thickness measures,
such as the visual thickness, of the local shear-layer width. The Θ(y) profile is also
used to compute the chemical-product thickness,

δp ≡
∫ ∞
−∞
Θ(y) dy. (8)

This represents the thickness of an equivalent layer that has risen, uniformly, to
the adiabatic-flame temperature, or, equivalently, has produced chemical product by
reactants mixed at the stoichiometric-mixture ratio. Finally, the product thickness is
normalized by the 1% temperature-rise profile thickness, δT , to obtain the dimen-
sionless product fraction, δp/δT , and a measure of chemical-product formation that
is insensitive to changes in the local shear-layer width (transverse extent).

Given the product fractions, for flows with stoichiometric-mixture ratios, φ = φ0

and φ = 1/φ0, for large φ0, the mixed-fluid fraction can estimated in the fast-kinetic
regime as (Dimotakis 1991)

δm

δT
=

∫ ∞
−∞
Pm(y) d

(
y

δT

)
, (9a)

where

Pm(y) '
∫ 1−εφ0

εφ0

p(X, y) dX, (9b)

where X is the high-speed freestream-fluid mole fraction, and p(X, y) is its probability
density function (p.d.f.) at the transverse coordinate, y, at the measuring station. This
can be estimated from the measured product thicknesses from a flip experiment, i.e.

δm

δT
' 1

1 + 1/φ0

[(
δp

δT

)
φ0

+

(
δp

δT

)
1/φ0

]
, (9c)

where

εφ0
' 1

2 (1 + φ0)
, e.g. ε8 ' 0.056. (9d)

For shear layers in the kinetically-fast regime, δm/δT provides a spatial/temporal
resolution-insensitive measurement of the molecularly-mixed fluid fraction at the
measurement location. In practice, that the kinetically-fast regime has been attained
can be ascertained by chemical product formation that remains unaltered as the kinetic
rate of the chemical reaction is varied. In this regime, chemical-product formation is
at high Da , i.e. mixing-rate-limited, rather than kinetic-rate-limited.

2. Experiments
The experiments reported here were conducted in the GALCIT Supersonic Shear

Layer (S3L) facility (Hall & Dimotakis 1989; Hall 1991). This is a two-stream, blow-
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Figure 1. Shear-layer flow test-section schematic.

down, wind tunnel, nominally operating at atmospheric (static) pressure, with a run
time of trun > tdat ' 2–4 s, where tdat is the data-recording time. Gas for the two
freestreams is supplied by independent flow systems.

The S3L facility can accommodate flows with fast-kinetic reactants, whose chemical
reaction and associated temperature rise in a known heat-capacity stream yields
measurements of molecular mixing in the turbulent shear-layer mixing region where
fluid from the two freestreams is entrained and mixed. For the experiments reported
here, a dilute mixture of H2 and NO is carried in the high-speed freestream and
a dilute concentration of F2 is carried in the low-speed freestream. The remaining
freestream fluid diluent components are selected to maintain a nominal density match
and uniform molar heat-capacity fluid, as reactant compositions are varied to produce
the desired stoichiometric-mixture ratios. A schematic of the test section is shown in
figure 1.

For the subsonic shear-layer flows investigated in these experiments, the high-speed
stream speed is maintained by controlling pressure in the high-speed stream plenum
by means of an active-control system, operated in an open-loop (program-control)
configuration. Gas to this plenum is supplied from a 1.2 m3 pressure vessel, at a
pressure that ranges from 2400 kPa to 2100 kPa during a blowdown run. The flow
is maintained isothermal by means of the large heat capacity of a rolled aluminium
screen that nearly fills the interior pressure-vessel space, occupying, roughly, 15%
of the volume. The pressure in the low-speed freestream supply plenum is set by a
choked metering valve, adjusted and kept fixed during each run. Gas to this plenum
is supplied from a 0.57 m3 vessel, containing a bladder bag with the fluorine charge
and pressurized, in turn, by a 12.7 m3 surge tank whose pressure falls by 3–5% during
the run time, trun, and less during the data-recording time interval, tdat.

Coarse-mesh-screen, honeycomb, and a series of fine-mesh-screen sections are used
for turbulence management in each plenum. The two streams are separated in their
respective plena by a splitter plate, which is flat on the top (high-speed) surface
and curved on the bottom (low-speed) surface, as shown in figure 2. Surface finish
quality was estimated to have an (average) roughness of 0.4 µm, using General
Electric surface-finish sample gauges. The splitter plate has a trailing-edge thickness
of 0.13 mm.
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Figure 2. Drawing of the splitter plate used in these experiments (figure 1).
Dimensions in English units.

The flow in the test section is confined by the top and bottom guidewalls, with
parallel optical windows serving as sidewalls, with a span, b = 15.3 cm. The upper
guidewall is maintained horizontal (parallel to top splitter-plate surface), with the
lower guidewall adjusted, as necessary in each flow, to remove mean streamwise
pressure gradients. This arrangement yields a shear layer with negligible pressure-
gradient and transverse bounding-wall effects.

The shear-layer experiments were performed at a single nominal flow condition,
with freestream speeds

U1 ' 100 m s−1 and U2 ' 40 m s−1, i.e. r ≡ U2

U1

' 0.4, (10a)

and a density ratio of

s ≡ ρ2

ρ1

' 1.0. (10b)

The speed and density ratios were chosen to facilitate a comparison with previous
work on chemically-reacting flows, at similar freestream conditions (e.g. Mungal et al.
1985; Frieler & Dimotakis 1988; Hermanson & Dimotakis 1989; Bond & Dimotakis
1996, as well as Island 1997), who investigated molecular mixing in shear layers
at different conditions, however, using a fluorescence-quenching (‘cold-chemistry’)
technique.

The pressure and temperature profiles in the present experiments were recorded at
a single measuring station, x = 0.365 m, where x is measured from the location of the
splitter-plate tip. Profiles were measured as a function of the transverse coordinate, y,
that is also referenced to the splitter-plate tip. The resulting shear layers have a local
Reynolds number at the measuring station in the range

1.8× 105 . Reδ ≡ ρ∆U δT (x)

µ
. 2.4× 105, (11)

where ∆U ≡ U1−U2 is the freestream velocity difference, and ρ and µ are the mixed-
fluid density and viscosity, respectively. These are calculated using the properties of
a gas mixture with a high-speed fluid mole fraction given by XE , which reflects the
mole ratio, En, of fluid entrained from the two freestreams, at the large scales of the
flow (Dimotakis 1986), i.e.

XE ' En

En + 1
, (12)
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θ(mm) Reθ ≡ ρUθ/µ x/θ P (equation (5a))

High-speed side: 0.11 640 3.3× 103 47
Low-speed side: 0.17 400 2.1× 103 –

Table 1. Untripped (natural) splitter plate boundary-layer flows.

Case 1. Fluorine-rich (φ = 8, ∆Tf ' 171 K):

U1 ' 100 m s−1: 8.00% Ar, 15.07% He, 0.93% H2, 0.14% NO, 75.86% N2

U2 ' 40 m s−1: 16.00% He, 8.00% F2, 76.00% N2.

Case 2. Hydrogen-rich (φ = 1/8, ∆Tf ' 267 K):

U1 ' 100 m s−1: 8.00% Ar, 4.00% He, 12.00% H2, 0.75% NO, 75.25% N2

U2 ' 40 m s−1: 6.45% Ar, 16.00% He, 1.55% F2, 76.00% N2

Case 3. Hydrogen-rich, reduced concentration (φ = 1/8, ∆Tf ' 171 K):

U1 ' 100 m s−1: 8.00% Ar, 8.00% He, 8.00% H2, 0.50% NO, 75.50% N2

U2 ' 40 m s−1: 6.97% Ar, 16.00% He, 1.03% F2, 76.00% N2

Case 4. Non-reacting:

U1 ' 100 m s−1: 8.00% Ar, 16.00% He, 76.00% N2

U2 ' 40 m s−1: 8.00% Ar, 16.00% He, 76.00% N2

Table 2. Freestream speeds and compositions.

assuming conservation of (total) enthalpy to estimate the mixed-fluid density, ρ,
and the method of Wilke (1950) to estimate the mixed-fluid (shear) viscosity, µ.
These parameters were kept nominally fixed to isolate the effects of variable-inflow
conditions, as each is known to influence shear-layer growth, entrainment, and mixing.
The range in (11) arises from variations in composition as well as (primarily) the
local shear-layer thickness, δ(x), in each case, as will be documented below.

Changes in inflow conditions were effected through various combinations of trip
wires on the splitter plate. For the freestream conditions of these experiments, es-
timated boundary-layer properties at the splitter-plate tip are listed in table 1. For
each condition, three sets of experimental runs were performed to create a ‘flip exper-
iment’. These relied on chemically-reacting flows, with stoichiometric-mixture ratios
of φ = φ0 and φ = 1/φ0, for φ0 = 8, in addition to non-reacting flows (‘cold’ runs).
Table 2 lists the flow conditions and freestream fluid compositions for these runs.

Local Reynolds numbers for the shear layers investigated, at the x = 0.365 m mea-
suring station (equation (11)), are higher than in the previous shear-layer, molecular-
mixing work by Mungal et al. (1985), which included an exploratory investigation of
inflow effects. In the upgraded facility used for the present experiments, it was possible
to increase flow speeds (and measuring-station Reynolds numbers), such that the nat-
ural (unperturbed) flow boundary layers could be expected to remain laminar, but at
high-enough Reynolds numbers to permit a transition to turbulent boundary layers,
if tripped. For higher Reynolds numbers yet, the naturally-occurring splitter-plate
boundary layers would be transitional, or naturally turbulent, and purposely altering
inflow conditions by tripping would not be expected to have as large a (reproducible)
effect.

The values of the adiabatic-flame temperature rise, ∆Tf , for these runs are all in
a regime where dilatation and other heat-release effects have been documented to
be small (Hermanson & Dimotakis 1989). As was noted in those investigations, the
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main heat-release effect, at the values of ∆Tf/T0 in the present experiments, where
T0 is the (common) stagnation temperature of the two freestreams, is the possible
dilatation-induced flow acceleration in the confined-flow environment. In the present
experiments, however, such effects were accommodated by adjusting the bottom (low-
speed) guidewall to maintain a zero streamwise pressure gradient (no acceleration),
for all cases, simulating an unbounded shear-layer flow, as noted above. That heat-
release effects are small in the present experiments can also be confirmed, directly,
by comparing the 1% thicknesses, δT , of Case 1 runs with those of Case 2 runs, for
which ∆Tf/T0 is substantially different, as well as the comparison of Case 2 with
Case 3 runs, if both are in the fast-kinetic regime.

Separate experiments were performed to ensure that these were in the fast chemical-
kinetic limit, i.e. at high Damköhler numbers (equation (6)), by proportionally re-
ducing the concentrations of all reactants. This decreases the kinetic rate by both
decreasing the number density of the reactant species as well as the adiabatic temper-
ature rise and associated Arrhenius kinetics constants, i.e. an increase in τchem, holding
τmix constant.

Three types of experimental results will be documented here: colour-schlieren
visualizations, mean-temperature measurements, and mean-velocity measurements.
Schlieren visualization records the instantaneous, overall, spanwise-averaged (two-
dimensional) structure of the layer. This indicates whether the shear-layer growth is
linear and also, depending on the selected sensitivity, whether any significant acoustic
disturbances are present. Colour schlieren, as discussed by various authors (e.g. Settles
1985), provides information on both components of the line-of-sight-averaged index-
of-refraction gradients in the flow, as opposed to a single component recorded by
traditional (black-and-white), knife-edge systems.

The temperature profiles are recorded by a rake of sixteen, 50 µm diameter,
chromel/alumel, exposed-junction thermocouples, that effectively produce running
temporal averages of the temperature at the respective measurement locations. Their
response (averaging) time is estimated to be approximately 20 ms. The velocity data
were deduced from direct Pitot- and static-pressure measurements, as described in
Hermanson & Dimotakis (1989) and below. As with the temperature data, the velocity
data represent running temporal averages at the measurement station.

For each flow condition, the corresponding non-reacting-flow temperature profile
is subtracted to compute the mean temperature-rise measurements, ∆Ti = ∆T (x, yi),
at each probe location. These are divided by the adiabatic flame temperature rise at
the stoichiometric-mixture ratio, ∆Tf , yielding the normalized mean temperature-rise
measurements, Θi = ∆Ti/∆Tf . These are least-squares fit with a functional form

Θ(y) ≡ ∆T (y)

∆Tf
= exp

[− (p0 + p1 y + p2 y
2 + p3 y

3 + p4 y
4
)]
. (13)

This analytical expression is used to estimate the 1% profile thickness, δT , as used in
the definition of the local Reynolds number (11), and the mixed-fluid fraction, δm/δT ,
as outlined above.

Velocity profiles are calculated from the Pitot pressure measurements in the usual
manner,

Ui =

(
2
[
Pp(yi)− Pg]
ρ(yi)

)1/2

, (14a)

with the Pp(yi) the Pitot pressure measurements at the probe locations, yi, Pg the
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Figure 3. Normalized temperature-rise data with natural (untripped) boundary layers. Diamonds:
Case 1, φ = 8. Triangles: Case 2, φ = 1/8. Asterisks: Case 3, φ = 1/8, reduced chemical-kinetic
rate.

guidewall (static) pressure measurement, and ρ(yi) the local density. These are then
least-squares fit with an analytical form,

U(y) = A+ B tanh
(
q0 + q1 y + q2 y

2 + q3 y
3
)
. (14b)

This provides measurements of the freestream speeds, U1 and U2, and contributes to
general monitoring of each run. For these incompressible flows, the density, ρ(y), is
estimated using the freestream temperature, T0, and density ρ0, and evaluating the
temperature-rise profile (13) at each probe location, i.e.

ρ(y) ' ρ0

1 +
[
∆Tf/T0

]
Θ(y)

. (15)

The data-recording time, tdat ' 2–4 s, in these experiments corresponds to the
passage of at least 103 large-scale structures, i.e. tdat ' Uc/`(x) & 103, where Uc '
(U1 + U2)/2 ' 70 m s−1 is the large-scale structure convection speed (unity density-
ratio freestreams) and `(x) is the large-scale-structure spacing, at the measuring
station.

3. Results and discussion
Normalized temperature-rise profile measurements for the natural (untripped) flow

conditions (Case 1) are plotted in figure 3. The corresponding velocity-profile data
are plotted in figure 4.

To ensure that the flows were in the kinetically-fast, high Da limit (cf. (6) and
associated discussion), reactant concentrations for the kinetically slower of the two
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Figure 4. Velocity profiles for natural (untripped) flows. Legend as in figure 3.

cases (H2-rich, φ = 1/8 case) were reduced to those listed under Case 3 (table 2).
Damköhler numbers associated with the F2-rich (φ = 8) case of the flip experiment
are higher than those of the H2-rich (φ = 1/8) case, with higher concentrations of
the rate-limiting (free) fluorine atoms in the former case. The Damköhler number
ratio for the two φ = 1/8 cases is computed to be larger than 3, if a homogeneous-
composition (well-stirred), constant-pressure, ‘balloon’ reactor (Dimotakis & Hall
1987) is used to estimate the reaction-completion times: τchem = 0.45 ms and 1.50 ms,
respectively (cf. (6)). As can be seen in figure 3, the two φ = 1/8 temperature-rise
profiles, corresponding to the already kinetically slower of the two φ, are within
typical experimental reproducibility, demonstrating that the flows are in the high Da
regime. The profile collapse also demonstrates that heat-release effects are weak; the
adiabatic flame temperature rise, ∆Tf , was lower by over a factor of 1.5 for the
kinetically-slower case (cf. table 2). No significant heat-release effects are manifest in
the velocity profiles, with differences typical of the small run-to-run variations. The
smooth curves in figure 4 are plots of the corresponding analytical fits (14b).

Acoustic forcing is known to exert an important influence on both large-scale en-
trainment (e.g. Koochesfahani & MacKinnon 1991), as well as on turbulent-fluctuation
profiles (e.g. Wygnanski, Oster & Fiedler 1979). Acoustic forcing of the type that
would resonate with some local, large-scale passage frequency at an intermediate
downstream location would result in nonlinear shear-layer growth rates (e.g. Wyg-
nanski et al. 1979; Oster & Wygnanski 1982; Ho & Huang 1982; Ho & Huerre 1984;
Dziomba & Fiedler 1985; Roberts 1985 and Roberts & Roshko 1985).

All shear layers investigated in the present experiments exhibit a very-nearly-linear
growth rate, i.e. δvis(x) ∝ x, as seen in the flow-visualization data reproduced in
figure 5. Such data represent instantaneous flow visualizations, i.e. are not time
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Figure 5. Composite colour-schlieren images of untipped (natural), Case 2 flows. Note linear
growth and similar large-scale structure, indicating self-similar flow.

Figure 8. Composite colour-schlieren images of tipped (0.8 mm wire on high-speed side), Case 2
flows. Note linear growth and geometrically-similar large-scale structures.
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averaged. They are subject, however, to an evolving aspect ratio, b/δ(x), where
b = 15.3 cm is the fixed span, while δ(x) ∝ x, as the layer grows. Any three-
dimensional structure of the flow will be scaled by the linearly-increasing local width,
δ(x), at its largest scales. As a consequence, an apparent evolution in ‘coherence’, i.e. an
artifact of the visualization, can be expected in such spanwise-averaged measurements
that makes the flow look as if it is becoming increasingly two-dimensional with
increasing downstream distance.

The temperature-rise data in figure 3 were used to compute the various quantities
described above. In particular, for this natural (untripped) flow,

Case 1: φ = 8, δT /x = 0.178, δp/δT = 0.277;

Case 2: φ = 1/8, δT /x = 0.177, δp/δT = 0.184,

}
(16a)

where δT is the temperature-rise profile 1% thickness and δp is the product thickness
(8). These numbers are determined with a precision for each flow of .1%, with
a run-to-run reproducibility, at these flow conditions, in the range of 1%–3%. The
reproducibility of the local shear layer width, δT/x, between different runs is indicative
of this behaviour. These can be used to compute the mixed-fluid fraction (9a),

δm/δT = 0.410. (16b)

As can be seen in figure 3, the locations of the peak temperature rise are nearly
aligned, despite the extreme shift in stoichiometric-mixture ratio (from φ = 1/8 to
φ = 8). Such behaviour is indicative of a ‘non-marching’ p.d.f., i.e. a p.d.f. that is
nearly independent of y, corresponding to compositions that do not favour fluid
entrained from the nearest freestream. These profiles were recorded in a high local
Reynolds number (Reδ ∼ 2×105) shear-layer flow, far downstream (x/θ1 ' 3.3×103),
and corresponding to a high value of the pairing parameter (P ' 47). As discussed
in the Introduction, by any of the measures employed to characterize such flows (cf.
(1), (3), (4) and (5a–c)), these data were recorded in an environment that must be
regarded as representing fully-developed turbulent shear flow.

The implied mixed-fluid composition at these conditions is at variance with the
report by Karasso & Mungal (1996). As discussed by these authors, one might expect
some spatial ‘flip’ shift in the two temperature-rise peaks, i.e. that the F2-rich (φ = 8)
case would have a peak temperature shifted towards the lean-reactant, H2-bearing
freestream, and vice versa for the H2-rich (φ = 1/8) case, at least in high Reynolds
number shear-layer flows. Examples of this behaviour are found in the references cited
above (cf. data and discussion in Dimotakis 1991), and are indicative of a probability-
density function (p.d.f.) that is ‘marching’, as it has become known, in which mixture
composition favours the fluid of the closer of the two freestreams and is a weak
function of the transverse coordinate, y. A similar absence of flip shift was observed
in the lower-Re, liquid-phase, chemically-reacting shear-layer flows of Koochesfahani
& Dimotakis (1986). Such behaviour was attributed to Schmidt number effects,
longer Lagrangian-time-frame delays to mix, or finite chemical-kinetic rate effects in
discussions of the BBM model (cf. Broadwell & Mungal 1991). Rogers & Moser
(1992, 1994) have attributed this to a higher degree of two-dimensional organization
in the flow. In their simulations of temporally-developing shear layers, these authors
found a correlation between the degree of two-dimensionality of conditions used
to initialize the simulation and the characteristics of the p.d.f. that persists for the
duration of the simulation time. In particular, for initial conditions dominated by two-
dimensional disturbances, the flow structure largely maintained the two-dimensionality
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Figure 6. Normalized temperature-rise data with tripped high-speed boundary layers.
Diamonds: Case 1 (φ = 8). Triangles: Case 2 (φ = 1/8).

yielding a scalar field described by a non-marching p.d.f. When initialized by a more
three-dimensional disturbance field, however, the flow evolved differently, yielding a
marching p.d.f. These temporal-flow simulations were conducted at Reδ . 2× 104, i.e.
just past the critical mixing transition (1). As noted by the authors, the strongly-two-
dimensional flow reached only an approximately self-similar state by the end of the
simulation.

To explore the sensitivity to inflow conditions, a 0.8 mm diameter trip wire was
placed on the upper (high-speed) face of the splitter plate, 50 mm upstream of the
splitter-plate trailing edge. The naturally-occurring boundary layer is laminar, with a
momentum thickness of 0.095 mm at the trip location (cf. with trailing edge values
in table 1), estimated using the method of Thwaites. The trip-wire size and position
matched those employed by Mungal et al. (1985), in the previous (subsonic) version
of this facility. White (1974) recommends a Reynolds number based on wire diameter
in excess of 850 to ensure transition (in a receptive boundary layer). The trip-wire
Reynolds number in this flow is estimated to be 4.6× 103. The resulting temperature-
rise and streamwise-velocity profile data, corresponding to those plotted in figures 3
and 4, are plotted in figures 6 and 7, respectively, with schlieren data reproduced in
figure 8 (see page 126).

The temperature-rise profiles in figure 6 are measured 0.415 m, or approximately
500 trip-wire diameters, downstream of the trip location, in the ‘far-field’ of this per-
turbation. The untripped flow, at the same location, satisfies all previously-proposed
criteria for fully-developed flow. In the case of the tripped boundary-layer flow, even
if the boundary layer (momentum thickness) was assumed to increase to 1/3 the
trip-wire diameter, the same criteria would still be satisfied.
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Figure 7. Velocity profiles for the flows with tripped high-speed side boundary layers.
Legend as figure 6.

The shear-layer growth and mixed-fluid quantities, for the flows with the high-speed
boundary-layer tripped, were also derived from these temperature-rise profile data,

Case 1: φ = 8, δT /x = 0.140, δp/δT = 0.293;

Case 2: φ = 1/8, δT /x = 0.138, δp/δT = 0.211,

}
(17a)

yielding a mixed-fluid fraction of

δm/δT = 0.448. (17b)

Comparing with the untripped boundary-layer data (16a), tripping the high-speed
boundary layer can be seen to have resulted in a growth rate, δT (x)/x, that is lower
by 21%±1.5%. This must be regarded as a substantial reduction considering that this
flow should have attained quasi-asymptotic behaviour, i.e. one in which inflow/initial
conditions are expected to exert a minimal influence, if any. This reduction, however,
is in qualitative accord with previous investigations, at lower Reδ , of two-stream (as
opposed to half-jet) shear layers, as discussed in the Introduction.

Significantly, the temperature-rise data for the tripped high-speed boundary-layer
exhibit a ‘flip’ shift, indicating that a transition to a ‘tilted’ molecularly-mixed-fluid
p.d.f. has occurred, i.e. one registering that the mixed-fluid composition is now a
function of the transverse coordinate, y. If this is to be expected of turbulence in
a ‘more-developed’ state, as suggested by Karasso & Mungal (1996), it cannot be
attributed to an increase in Reynolds number. The 21% reduction in local thickness,
δT (x), induced by tripping the high-speed side boundary layer, decreases the local
Reynolds number, Reδ , by the same amount. The data are also at variance with the
proposed Karasso & Mungal criteria for p.d.f. evolution and behaviour, in terms of
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Figure 9. Normalized temperature-rise data for tripped and untripped splitter-plate boundary layers
at φ = 8. Transverse coordinate normalized by δT . Triangles: tripped high-speed side; diamonds:
untripped high-speed side.

the change in x/θ1. The tripped flow has a slightly-thicker high-speed boundary layer,
i.e. a higher θ1, and, therefore, a lower scaled downstream distance, x/θ1, as well as
pairing parameter, P . Changes in this direction should have had the opposite effect,
i.e. taken a ‘non-marching’ p.d.f., characteristic of ‘undeveloped’ flow, to a ‘marching’
p.d.f., characteristic of ‘developed’ flow, according to these authors.

Tripping reduced entrainment and shear-layer growth far downstream of the change
in inflow conditions. Interestingly, it also produced more vigorous stirring and effective
molecular mixing. The latter can be ascertained by plotting the data, scaling the
transverse coordinate by the local width, i.e. y/δT , as in figures 9 and 10. It is in these
units that the computation of the mixed-fluid fraction, δm/δT , is performed (equation
(9)). The increase in chemical product and molecular mixing within the shear layer,
in each case, is clear. As can be seen by comparing the product fractions, δp/δT , for
the two cases, (16) vs. (17), the increase is approximately 6% in the φ = 8 flow and
16% in the φ = 1/8 flow.

Comparing the schlieren image data in figure 5 and figure 8 reveals that tripping
the high-speed-side boundary layer has also changed the large-scale structure, far
downstream. For the tripped flow, a decrease in the two-dimensional organization of
the flow is evident, with the spanwise optical integration obscuring the local large-
scale structures, in the upstream half of the flow, which are only evident further
downstream. The inferred ‘marching’ scalar p.d.f. behaviour for this flow is observed
along with this decrease in two-dimensional organization, as also noted by Rogers
& Moser (1994) in their numerical simulations. In the context of the large-scale-
entrainment model for this flow (Dimotakis 1986), a change in the entrained-fluid
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Figure 10. Normalized temperature-rise data for tripped and untripped boundary layers at
φ = 1/8. Transverse coordinate normalized by δT . Legend as figure 9.

mole ratio, En, is expected. While this was not measured, one can infer the mixed-fluid
molar composition ratio,

En =

(
δp/δT

)
φ0(

δp/δT
)

1/φ0

. (18)

In the limit of large φ0, this measures the moles of high-speed freestream fluid, per
mole of low-speed freestream fluid, that are molecularly mixed in the layer. The two
ratios, En and En, need not have the same value. The former measures the entrained-
fluid ratio, at the largest scales of the flow, whereas the latter measures the mixed-fluid
ratio. Using the tripped and untripped shear layer temperature-rise measurements,
we find from (18),

(En)untripped ' 1.52, vs. (En)tripped ' 1.39, (19)

i.e. a shift to a lower mixed-fluid composition ratio (closer to symmetric).
The increase in the large-scale-structure spacing-to-position ratio induced by the

trip, evident in the schlieren data, suggests that the change in En is towards larger
values, i.e. in the opposite direction. In addition, the visual-thickness growth rate, at
least as derived from a few, single-realization, temporally-resolved schlieren images,
appears to be slightly larger for the tripped flow (figure 8) than that for the untripped
flow (figure 5), i.e. opposite to the reduction noted for the temporally-averaged
1% temperature-rise thickness, δT . The 1% temperature-rise thickness, δT , has been
reported to be close to the visual thickness, δvis. To a first approximation, both
rely on the bounding extent of mixed fluid. As can be appreciated, however, the
two measures differ in the way the distribution of unmixed fluid affects them. The
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Figure 11. Velocity profiles for both untripped and tripped flows. Transverse coordinate
normalized by 1% temperature-rise thickness.

visual thickness, δvis, is effectively determined by the transverse extent of the mixed-
fluid-containing large-scale structures, whereas the 1% temperature-rise thickness, δT ,
depends on the mixed-/unmixed-fluid spatial duty cycle (cf. Mungal & Dimotakis
1984) near the shear-layer edges, which is sensitive to the large-scale structure itself.
Similar considerations apply to the difference between En, the entrained-fluid ratio,
and En, the mixed-fluid composition ratio, which are found to respond in the opposite
direction to the tripping. It is interesting that the change in the mixed-fluid distribution
across the shear-layer transverse extent is such as to result in a sign difference in the
growth-rate change, as registered by the two different measures.

The velocity profiles for the untripped and tripped flows examined thus far are
plotted in figure 11, vs. the normalized transverse coordinate, y/δT , for comparison.
This scaling can be seen to produce a substantial collapse of the mean, streamwise
velocity profile at the measuring station, despite the differences between tripped and
untripped flows discussed above. This collapse also demonstrates that the transverse
length scale, as estimated on the basis of mixed-fluid/temperature-rise data, also scales
the velocity field, i.e. that δu(x) ' δT (x), where δu(x) would be some appropriate
velocity-profile-based transverse width. Finally, the collapse in the scaled profiles
in figure 11, indicates that the mean velocity is largely insensitive to the processes
responsible for the changes in entrainment and mixing. Conversely, it would be
surprising if shear-layer-entrainment and -mixing models based on mean-velocity
profiles, e.g. of eddy-viscosity-type, could accommodate, let alone predict, the observed
mixing dependence on inflow conditions.

Additional experiments were performed to explore the effects that other near-field
perturbations might have, at these nominal conditions. Guided by the results of
Lang (1985), in which a large low-speed-side momentum defect (wake) was found to
significantly increase the shear-layer growth rate at a freestream speed ratio of r ' 0.5,
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Figure 12. Normalized temperature-rise data with various low-speed boundary layer trips. All
flows with Case 2 reactant concentrations. Diamonds: Untripped flow. Triangles: 0.8 mm trip wire.
Asterisks: 1.6 mm trip wire.

two different trip wires were employed on the low-speed side of the splitter plate,
with diameters of 0.8 mm and 1.6 mm, also at x = −50 mm. The natural low-speed
side boundary layer is estimated to be laminar and to have a momentum thickness of
0.15 mm at this trip location. As seen in figure 12, these low-speed-side perturbations
have little, if any, influence on the far-field growth of the layer, in contrast to the
significant changes induced by tripping the high-speed splitter-plate boundary layer,
and only a weak effect on mixing.

The low-speed-side splitter plate has concave curvature over a portion of its length
(cf. figures 1 and 2), and may be susceptible to Taylor–Görtler vortex formation. At
the conditions of these experiments, however, the Taylor number is estimated to be
approximately 4, significantly less than the stability limit of 7 proposed by Liepmann
(1945; cf. also discussion in Schlichting 1968). This indicates that the untripped
low-speed boundary layer did not support Taylor–Görtler vortices and was probably
laminar. We then infer that the lack of low-speed-side boundary-layer trip influence is
not because the naturally-occurring (untripped) low-speed boundary layer is already
turbulent. A direct measurement that would reveal the boundary-layer state would
not be a simple undertaking in this flow facility and was not attempted.

As a further exploration, both splitter-plate boundary layers were tripped to see if
additional effects could be detected (cf. figure 13). In this case, the temperature-rise
profile is nearly indistinguishable from that of the flow in which only the high-speed
boundary layer was tripped.

Table 3 summarizes the various computed quantities for each of the natural, or
tripped, inflow boundary layer configurations.
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Figure 13. Normalized temperature-rise data with various boundary layer trips. Both flows employ
Case 2 reactant concentrations, and 0.8 mm-diameter trip wires. Diamonds: Both sides tripped,
triangles: High-speed side tripped.

Mixture, perturbation δT / (mm) δp/ (mm) δp/δT Reδ × 105

Case 1, untripped: 65.0 18.0 0.277 2.3
Case 1, 0.8 mm HSS trip: 51.1 15.0 0.293 1.8
Case 2, untripped: 64.6 11.9 0.184 2.3
Case 2, 0.8 mm HSS trip: 50.5 10.7 0.211 1.8
Case 2, 0.8 mm LSS trip: 63.7 12.0 0.189 2.2
Case 2, 1.6 mm LSS trip: 63.7 12.4 0.195 2.2
Case 2, 0.8 mm trips (both): 51.3 10.6 0.206 1.8
Case 3, untripped: 67.4 12.3 0.181 2.4

Table 3. Chemically-reacting flow data.

4. Conclusions
In the shear-layer flows investigated, the measuring station is well downstream

of the minimum recommended distance, as scaled by the initial boundary-layer(s)
momentum thickness, the values of the ‘pairing parameter’ (equation (5a)) are well in
excess of previously-proposed minimum values, and local Reynolds numbers are well
beyond the ‘mixing transition’, i.e. Reδ � 104, as indicated for asymptotic, self-similar
behaviour, mixing, and chemical-product formation.

In assessing the various criteria for the attainment of self-similarity, it could be
argued that the Bradshaw, minimum-x/θ criterion, which was devised for a half-jet,
should be modified in the case of a two-stream mixing layer. In the latter case, two
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separating boundary layers are contributed into the near-field region downstream of
the splitter-plate trailing edge, with two momentum thicknesses, θ1 and θ2. Perhaps,
then, the minimum distance to attain a quasi-self-similar state should be scaled by
the sum of the two, i.e. x/(θ1 + θ2), which must then be greater than some minimum,
possibly the same (equation (3)), value. Other experimental evidence, however, as
discussed in the context of the Dimotakis & Brown (1976) criterion, devised for a
two-stream mixing layer, supports the original Bradshaw proposal, i.e. a downstream
distance scaled as x/θ1. Additionally, the initial Kelvin–Helmholtz roll-up length, `0,
which launches the subsequent large-scale sequence, is scaled by θ1, as indicated by
linear-stability analysis. Finally, in the experimental results presented here, tripping
the low-speed boundary layer, which increases its momentum thickness, was found to
have no effect on the flow.

At least on the basis of the flow-visualization data presented here, one may
conclude that quasi-self-similarity is attained relatively early on, with no evidence of
a transition in behaviour at some indicated scaled downstream location, by any of
the criteria discussed in the Introduction. This may not be as clear in the tripped-flow
case images; an initially-turbulent high-speed boundary layer will not permit the
high spanwise coherence to develop from the outset, with the large-scale-structure
organization only evident when the span-to-height aspect ratio of the large-scale
structures has become small enough, as discussed above. Nevertheless, even in that
case, a quasi-linear growth can be seen nearly along the full downstream extent of
the developing shear layer.

We note that a free shear layer is a particularly good candidate flow to study the
effects of inflow/outflow conditions. Following the initial post-trailing-edge region,
the flow is locally only convectively unstable (Huerre & Monkewitz 1990), with a
small absolute-instability region confined to the wake region downstream of the
splitter-plate trailing edge (cf. Koch 1985). In the context of convective/absolute
instability behaviour, altering the characteristics of the absolute-instability region,
that feeds the convectively-unstable flow downstream, may be expected to produce
large effects. Secondly, the array of large-scale vortical structures in this flow are all
of like sign in their circulation, leading to the strong upstream/downstream coupling
noted by Dimotakis & Brown (1976). Other flows, such as wakes or boundary layers,
for example, either have large-scale structures with a circulation of alternating sign, or
an antisymmetric vortical image system that presents similarly-attenuated long-range
induced-velocity effects.

The shear-layer growth rate as well as molecular mixing were found to depend on
inflow conditions; phenomena associated with large- and small-scale behaviour, re-
spectively. The present results corroborate previously-documented findings as regards
the effects of inflow (boundary-layer) conditions on shear-layer growth. They also
demonstrate, however, that inflow conditions influence small-scale (molecular) mixing
in shear layers, far downstream and at high values of the local Reynolds number.
Interestingly, scaling the velocity profiles downstream by the shear-layer thickness
removes the effect of inflow conditions on the flow, concealing the conspicuous effects
on large-scale growth and entrainment, and (molecular) mixing. While it could be
argued that small-scale mixing behaviour is slaved to the environment created by
the altered large-scales in the flow, the observations documented above indicate that
small-scale behaviour is not universal, i.e. is not dictated by local flow variables and
Reynolds number.

In conclusion, shear-layer flow data presented here, as well as in previous investiga-
tions, indicate that while a quasi-self-similar state can be achieved at high Reynolds
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numbers, within a relatively short downstream extent, this state is a function of in-
flow conditions. This is at variance with previously-applied criteria for self-similarity,
which imply the existence of some universal flow state beyond a minimum scaled
downstream distance. In particular, the flow at high Reynolds numbers and away
from inflow boundaries is not found to be a unique function of local-flow parameters,
such as freestream-velocity and -density ratios, local Reynolds number, etc. as has
been argued by George (1989). No support for the existence of a universal, local-
parameter-defined flow can be gleaned from these investigations. Indeed, the apparent
discrepancies between the new results and previous findings, as well as inconsistencies
between numerous previous reports, are probably attributable to past interpretations
that have implicitly assumed that an inflow-independent, quasi-asymptotic state exists,
as discussed in the Introduction.
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